Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.468
Filter
1.
Microbiol Spectr ; 10(1): e0040621, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35170996

ABSTRACT

Bacteria-derived natural antimicrobial compounds such as bacteriocins, reruterin, and organic acids have recently received substantial attention as food preservatives or therapeutic alternatives in human or animal sectors. This study aimed to evaluate the antimicrobial activity of different bacteria-derived antimicrobials, alone or in combination, against a large panel of Gram-negative and Gram-positive bacteria. Bacteriocins, including microcin J25, pediocin PA-1, nisin Z, and reuterin, were investigated alone or in combination with lactic acid and citric acid, using a checkerboard assay. Concentrations were selected based on predetermined MICs against Salmonella enterica subsp. enterica serovar Newport ATCC 6962 and Listeria ivanovii HPB28 as Gram-negative and Gram-positive indicator strains, respectively. The results demonstrated that the combination of microcin J25 + citric acid + lactic acid; microcin J25 + reuterin + citric acid; and microcin J25 + reuterin + lactic acid tested against S. Newport ATCC 6962 showed synergistic effects (FIC index = 0.5). Moreover, a combination of pediocin PA-1 + citric acid + lactic acid; and reuterin + citric acid + lactic acid against L. ivanovii HPB28 showed a partially synergistic interactions (FIC index = 0.75). Nisin Z exerted a partially synergistic effect in combination with acids (FIC index = 0.625 -0.75), whereas when it was combined with reuterin or pediocin PA-1, it showed additive effects (FIC index = 1) against L. ivanovii HPB28. The inhibitory activity of synergetic consortia were tested against a large panel of Gram-positive and Gram-negative bacteria. According to our results, combining different antimicrobials with different mechanisms of action led to higher potency and a broad spectrum of inhibition, including multidrug-resistance pathogens. IMPORTANCE Reuterin and bacteriocins, including microcin J25, pediocin PA-1, nisin were produced and purified with >90% purity. Using the broth-based checkerboard assay the interaction between these compounds (synergetic, additive, or antagonistic) was assessed. By combining different natural antimicrobials with different modes of action and structure (reuteirn, microcin J25, pediocin PA-1, and organic acids), we successfully developed five different synergetic consortia with improved antimicrobial activity and a broad spectrum of inhibition. These consortia were shown to be effective against a large panel of pathogenic and spoilage microorganisms as well as clinically important multidrug-resistance bacteria. Moreover, because the lower concentrations of bacteriocins and reuterin are used in the synergetic consortia, there is a limited risk of toxicity and resistance development for these compounds.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Infections/microbiology , Bacteriocins/pharmacology , Drug Synergism , Bacterial Infections/drug therapy , Drug Resistance, Bacterial , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Humans , Microbial Sensitivity Tests
2.
Molecules ; 27(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35164110

ABSTRACT

Microorganisms are able to give rise to biofilm formation on food matrixes and along food industry infrastructures or medical equipment. This growth may be reduced by the application of molecules preventing bacterial adhesion on these surfaces. A new Schiff base ligand, derivative of hesperetin, HABH (2-amino-N'-(2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene)benzohydrazide), and its copper complex, CuHABH [CuLH2(OAc)], were designed, synthesized and analyzed in terms of their structure and physicochemical properties, and tested as antibacterial agents. Their structures both in a solid state and in solution were established using several methods: FT-IR, 1H NMR, 13C NMR, UV-Vis, FAB MS, EPR, ESI-MS and potentiometry. Coordination binding of the copper(II) complex dominating at the physiological pH region in the solution was found to be the same as that detected in the solid state. Furthermore, the interaction between the HABH and CuHABH with calf-thymus DNA (CT-DNA) were investigated. These interactions were tracked by UV-Vis, CD (circular dichroism) and spectrofluorimetry. The results indicate a stronger interaction of the CuHABH with the CT-DNA than the HABH. It can be assumed that the nature of the interactions is of the intercalating type, but in the high concentration range, the complex can bind to the DNA externally to phosphate residues or to a minor/major groove. The prepared compounds possess antibacterial and antibiofilm activities against Gram-positive and Gram-negative bacteria. Their antagonistic activity depends on the factor-strain test system. The glass was selected as a model surface for the experiments on antibiofilm activity. The adhesion of bacterial cells to the glass surface in the presence of the compounds was traced by luminometry and the best antiadhesive action against both bacterial strains was detected for the CuHABH complex. This molecule may play a crucial role in disrupting exopolymers (DNA/proteins) in biofilm formation and can be used to prevent bacterial adhesion especially on glass equipment.


Subject(s)
Anti-Bacterial Agents , Coordination Complexes , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/growth & development , Hesperidin , Hydrazones , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , Copper/pharmacology , Hesperidin/chemistry , Hesperidin/pharmacology , Hydrazones/chemistry , Hydrazones/pharmacology , Microbial Sensitivity Tests
3.
Sci Rep ; 12(1): 1419, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35082366

ABSTRACT

The aim of this study was to determine the prevalence, antimicrobial susceptibility pattern and associated factors of urinary tract infection (UTI) among pregnant women attending Hargeisa Group Hospital (HGH), Hargeisa, Somaliland. A cross-sectional study was conducted at HGH, Hargeisa, Somaliland and participants were selected by systematic random sampling technique. Clean catch midstream urine samples were collected from 422 participants and cultured and antimicrobial susceptibility pattern was determined for the isolates. Univariable and multivariable logistic regression analyses were utilized to identify the independent risk factors for UTI. The prevalence of UTI was 16.4% (95% CI 13.3-19.9). The predominant bacteria isolate was E. coli (43.5%) followed by Coagulase negative staphylococcus (CoNS) 11(16%), S. aureus 9(13%), K. pneumonia 6(8.7%), Pseudomonas aeruginosa 5(7.2%), Proteus mirabilis 4(5.8%), Citrobacter spp 3(4.4%) and M. morganii 1(1.5%) Gram negative bacilli were resistant to ampicillin (96%) and tetracycline (71.4%) and Gram-positive cocci were also resistant to ampicillin (90%), tetracycline (55%). Multidrug resistance was observed in 85.5% of bacterial isolated. No formal education participants, previous history of catheterization and previous history of UTI had 3.18, 3.22 and 3.73 times respectively more likely to develop UTI than their counterparts. Culture and susceptibility test is vital for appropriate management of UTI in the study area.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/epidemiology , Gram-Positive Bacteria/drug effects , Gram-Positive Bacterial Infections/epidemiology , Urinary Tract Infections/epidemiology , Adolescent , Adult , Ampicillin/therapeutic use , Cross-Sectional Studies , Djibouti/epidemiology , Female , Gram-Negative Bacteria/growth & development , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Gram-Positive Bacteria/growth & development , Gram-Positive Bacteria/isolation & purification , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Hospitals , Humans , Microbial Sensitivity Tests , Pregnancy , Prevalence , Tetracycline/therapeutic use , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology
4.
Protein Expr Purif ; 192: 106032, 2022 04.
Article in English | MEDLINE | ID: mdl-34922007

ABSTRACT

Insect defensins are effector components of the innate defense system. Defensins, which are widely distributed among insects, are a type of small cysteine-rich plant antimicrobial peptides with broad-spectrum antimicrobial activity. Here, the cDNAs of the black soldier fly, Hermetia illucens (L.), encoding six defensins, designated herein as Hidefensin1-1, 2, 3, 4, 5, 6. Moreover, Hidefensin1-1, 2, and 5 were identified for the first time by genome-targeted analysis. These Hidefensins were found to mainly adopt α-helix and ß-sheet conformation homology as modeled by PRABI, Swiss-Model and ProFunc server. Six conserved cysteine residues that contribute to three disulfide bonds formed the spacing pattern "C-X12-C-X3-C-X9-C-X5-C-X-C", which play a vital role in the molecular stability of Hidefensins. Phylogenetic analysis revealed that the homology of five Hidefensins (except Hidefensin4) was about 59%-92% compared with other insect defensins, indicating that they are novel antimicrobial peptides genes in black soldier fly. Furthermore, the Hidefensin1-1 was expressed in the Escherichia coli strain BL21(DE3) as a fusion protein with thioredoxin. Results showed that the purified TRX-Hidefensin1-1 exerted strong inhibitory effects against the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Escherichia coli. The inhibitory efficacy of TRX-Hidefensin1-1 against Gram-positive bacteria was better than that against Gram-negative bacteria. These results indicated that Hidefensin1-1 has potent antimicrobial activities against test pathogens.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Defensins/chemistry , Defensins/pharmacology , Diptera/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Anti-Bacterial Agents/metabolism , Defensins/genetics , Defensins/metabolism , Diptera/chemistry , Diptera/classification , Diptera/genetics , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Phylogeny , Sequence Alignment
5.
Int J Mol Sci ; 22(23)2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34884951

ABSTRACT

Antimicrobial, membranotropic and cytotoxic properties of dicationic imidazolium surfactants of n-s-n (Im) series with variable length of alkyl group (n = 8, 10, 12, 14, 16) and spacer fragment (s = 2, 3, 4) were explored and compared with monocationic analogues. Their activity against a representative range of Gram-positive and Gram-negative bacteria, and also fungi, is characterized. The relationship between the biological activity and the structural features of these compounds is revealed, with the hydrophobicity emphasized as a key factor. Among dicationic surfactants, decyl derivatives showed highest antimicrobial effect, while for monocationic analogues, the maximum activity is observed in the case of tetradecyl tail. The leading compounds are 2-4 times higher in activity compared to reference antibiotics and prove effective against resistant strains. It has been shown that the antimicrobial effect is not associated with the destruction of the cell membrane, but is due to specific interactions of surfactants and cell components. Importantly, they show strong selectivity for microorganism cells while being of low harm to healthy human cells, with a SI ranging from 30 to 100.


Subject(s)
Anti-Infective Agents/chemical synthesis , Fungi/growth & development , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/growth & development , Imidazoles/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Cell Line , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Hemolysis , Hydrophobic and Hydrophilic Interactions , Imidazoles/chemistry , Imidazoles/pharmacology , Microbial Sensitivity Tests , Microbial Viability/drug effects , Structure-Activity Relationship , Surface-Active Agents/chemical synthesis , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology
6.
Molecules ; 26(22)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34834109

ABSTRACT

Oregano oil (OrO) possesses well-pronounced antimicrobial properties but its application is limited due to low water solubility and possible instability. The aim of this study was to evaluate the possibility to incorporate OrO in an aqueous dispersion of chitosan-alginate nanoparticles and how this will affect its antimicrobial activity. The encapsulation of OrO was performed by emulsification and consequent electrostatic gelation of both polysaccharides. OrO-loaded nanoparticles (OrO-NP) have small size (320 nm) and negative charge (-25 mV). The data from FTIR spectroscopy and XRD analyses reveal successful encapsulation of the oil into the nanoparticles. The results of thermogravimetry suggest improved thermal stability of the encapsulated oil. The minimal inhibitory concentrations of OrO-NP determined on a panel of Gram-positive and Gram-negative pathogens (ISO 20776-1:2006) are 4-32-fold lower than those of OrO. OrO-NP inhibit the respiratory activity of the bacteria (MTT assay) to a lower extent than OrO; however, the minimal bactericidal concentrations still remain significantly lower. OrO-NP exhibit significantly lower in vitro cytotoxicity than pure OrO on the HaCaT cell line as determined by ISO 10993-5:2009. The irritation test (ISO 10993-10) shows no signs of irritation or edema on the application site. In conclusion, the nanodelivery system of oregano oil possesses strong antimicrobial activity and is promising for development of food additives.


Subject(s)
Alginates , Anti-Bacterial Agents , Chitosan , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/growth & development , Nanoparticles/chemistry , Oils, Volatile , Origanum/chemistry , Alginates/chemistry , Alginates/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology
7.
EMBO J ; 40(21): e108174, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34636061

ABSTRACT

All bacteria produce secreted vesicles that carry out a variety of important biological functions. These extracellular vesicles can improve adaptation and survival by relieving bacterial stress and eliminating toxic compounds, as well as by facilitating membrane remodeling and ameliorating inhospitable environments. However, vesicle production comes with a price. It is energetically costly and, in the case of colonizing pathogens, it elicits host immune responses, which reduce bacterial viability. This raises an interesting paradox regarding why bacteria produce vesicles and begs the question as to whether the benefits of producing vesicles outweigh their costs. In this review, we discuss the various advantages and disadvantages associated with Gram-negative and Gram-positive bacterial vesicle production and offer perspective on the ultimate score. We also highlight questions needed to advance the field in determining the role for vesicles in bacterial survival, interkingdom communication, and virulence.


Subject(s)
Extracellular Vesicles/metabolism , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/metabolism , Microbial Viability/genetics , Secretory Vesicles/metabolism , Virulence Factors/genetics , Animals , Extracellular Vesicles/chemistry , Gene Expression , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/growth & development , Gram-Negative Bacteria/pathogenicity , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/growth & development , Gram-Positive Bacteria/pathogenicity , Host-Parasite Interactions/genetics , Humans , Immunity, Innate , Quorum Sensing/genetics , Secretory Vesicles/chemistry , Virulence , Virulence Factors/metabolism
8.
Biomolecules ; 11(8)2021 08 02.
Article in English | MEDLINE | ID: mdl-34439804

ABSTRACT

The bioprospecting of marine and brackish water systems has increased during the last decades. In this respect, microalgae, including cyanobacteria, and their metabolites are one of the most widely explored resources. Most of the bioactive compounds are isolated from ex situ cultures of microorganisms; however, analysis of field samples could also supply valuable information about the metabolic and biotechnological potential of microalgae communities. In this work, the activity of phytoplankton samples from the Curonian Lagoon was studied. The samples were active against antibiotic resistant clinical and environmental bacterial strains as well as against serine proteases and T47D human breast adenocarcinoma cells. No significant effect was found on Daphnia magna. In addition, using LC-MS/MS, we documented the diversity of metabolites present in field samples. A list of 117 detected cyanopeptides was presented. Cyanopeptolins constituted the largest class of cyanopeptides. As complex bloom samples were analyzed, no link between the observed activity and a specific sample component can be established. However, the results of the study showed a biotechnological potential of natural products from the Curonian Lagoon.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Cyanobacteria/chemistry , Microalgae/chemistry , Phytoplankton/chemistry , Animals , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemistry , Atlantic Ocean , Baltic States , Bays/microbiology , Biological Products/chemistry , Cell Line, Tumor , Complex Mixtures/chemistry , Complex Mixtures/pharmacology , Cyanobacteria/metabolism , Daphnia/drug effects , Daphnia/physiology , Depsipeptides/chemistry , Depsipeptides/pharmacology , Eutrophication , Fresh Water/microbiology , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Humans , Microalgae/metabolism , Microbial Sensitivity Tests , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Phytoplankton/metabolism , Saline Waters/chemistry , Serine Proteases/metabolism
9.
Int J Mol Sci ; 22(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34360723

ABSTRACT

The emergence of multidrug-resistant bacteria is a worldwide health problem. Antimicrobial peptides have been recognized as potential alternatives to conventional antibiotics, but still require optimization. The proline-rich antimicrobial peptide Bac7(1-16) is active against only a limited number of Gram-negative bacteria. It kills bacteria by inhibiting protein synthesis after its internalization, which is mainly supported by the bacterial transporter SbmA. In this study, we tested two different lipidated forms of Bac7(1-16) with the aim of extending its activity against those bacterial species that lack SbmA. We linked a C12-alkyl chain or an ultrashort cationic lipopeptide Lp-I to the C-terminus of Bac7(1-16). Both the lipidated Bac-C12 and Bac-Lp-I forms acquired activity at low micromolar MIC values against several Gram-positive and Gram-negative bacteria. Moreover, unlike Bac7(1-16), Bac-C12, and Bac-Lp-I did not select resistant mutants in E. coli after 14 times of exposure to sub-MIC concentrations of the respective peptide. We demonstrated that the extended spectrum of activity and absence of de novo resistance are likely related to the acquired capability of the peptides to permeabilize cell membranes. These results indicate that C-terminal lipidation of a short proline-rich peptide profoundly alters its function and mode of action and provides useful insights into the design of novel broad-spectrum antibacterial agents.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Cationic Peptides , Escherichia coli/growth & development , Gram-Positive Bacteria/growth & development , Lipoylation , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology
10.
ACS Synth Biol ; 10(8): 1980-1991, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34347446

ABSTRACT

A large number of antimicrobial peptides depend on intramolecular disulfide bonds for their biological activity. However, the relative instability of disulfide bonds has limited the potential of some of these peptides to be developed into therapeutics. Conversely, peptides containing intramolecular (methyl)lanthionine-based bonds, lanthipeptides, are highly stable under a broader range of biological and physical conditions. Here, the class-II lanthipeptide synthetase CinM, from the cinnamycin gene cluster, was employed to create methyllanthionine stabilized analogues of disulfide-bond-containing antimicrobial peptides. The resulting analogues were subsequently modified in vitro by adding lipid tails of variable lengths through chemical addition. Finally, the created compounds were characterized by MIC tests against several relevant pathogens, killing assays, membrane permeability assays, and hemolysis assays. It was found that CinM could successfully install methyllanthionine bonds at the intended positions of the analogues and that the lipidated macrocyclic core peptides have bactericidal activity against tested Gram-positive and Gram-negative pathogenic bacteria. Additionally, fluorescence microscopy assays revealed that the lipidated compounds disrupt the bacterial membrane and lyse bacterial cells, hinting toward a potential mode of action. Notably, the semisynthesized macrocyclic lipo-lanthipeptides show low hemolytic activity. These results show that the methods developed here extend the toolbox for novel antimicrobial development and might enable the further development of novel compounds with killing activity against relevant pathogenic bacteria.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/growth & development , Macrocyclic Compounds , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Antimicrobial Peptides/biosynthesis , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/metabolism , Macrocyclic Compounds/pharmacology
11.
World J Microbiol Biotechnol ; 37(9): 152, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34398332

ABSTRACT

ß-lactam antibiotics are the most frequently prescribed class of drugs worldwide, due to its efficacy and good safety profile. However, the emergence of ß-lactamase producing bacterial strains eliminated the use of ß-lactam antibiotics as a chemotherapeutic choice. To restore their usability, a non-antibiotic adjuvant in conjunction with ß-lactam antibiotics is now being utilised. Cholic acid potentially acts as an adjuvant since it can blunt the pro-inflammatory activity in human. Our main objective is to scrutinise the inhibition of ß-lactamase-producing bacteria by adjuvant cholic acid, synergism of the test drugs and the primary mechanism of enzymatic reaction. Antibacterial effect of the cholic acid-ampicillin (CA-AMP) on 7 ß-lactamase positive isolates were evaluated accordingly to disc diffusion assay, antibiotic susceptibility test, as well as checkerboard analysis. Then, all activities were compared with ampicillin alone, penicillin alone, cholic acid alone and cholic acid-penicillin combination. The CA-AMP displayed notable antibiotic activity on all test bacteria and depicted synergistic influence by representing low fractional inhibitory concentration index (FIC ≤ 0.5). According to kinetic analyses, CA-AMP behaved as an uncompetitive inhibitor against beta lactamase, with reducing values of Michaelis constant (Km) and maximal velocity (Vmax) recorded. The inhibitor constant (Ki) of CA-AMP was equal to 4.98 ± 0.3 µM, which slightly lower than ampicillin (5.00 ± 0.1 µM).


Subject(s)
Cholic Acid/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/growth & development , beta-Lactamase Inhibitors/pharmacology , Ampicillin/pharmacology , Drug Synergism , Gene Expression Regulation, Bacterial/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/enzymology , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/enzymology , Microbial Sensitivity Tests , Microbial Viability/drug effects , Penicillins/pharmacology , beta-Lactamases/metabolism
12.
Molecules ; 26(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34361723

ABSTRACT

Genito-urinary tract infections have a high incidence in the general population, being more prevalent among women than men. These diseases are usually treated with antibiotics, but very frequently, they are recurrent and lead to the creation of resistance and are associated with increased morbidity and mortality. For this reason, it is necessary to develop new compounds for their treatment. In this work, our objective is to review the characteristics of the compounds of a new formulation called Itxasol© that is prescribed as an adjuvant for the treatment of UTIs and composed of ß-arbutin, umbelliferon and n-acetyl cysteine. This formulation, based on biomimetic principles, makes Itxasol© a broad-spectrum antibiotic with bactericidal, bacteriostatic and antifungal properties that is capable of destroying the biofilm and stopping its formation. It also acts as an anti-inflammatory agent, without the adverse effects associated with the recurrent use of antibiotics that leads to renal nephrotoxicity and other side effects. All these characteristics make Itxasol© an ideal candidate for the treatment of UTIs since it behaves like an antibiotic and with better characteristics than other adjuvants, such as D-mannose and cranberry extracts.


Subject(s)
Acetylcysteine/therapeutic use , Arbutin/therapeutic use , Biological Products/therapeutic use , Umbelliferones/therapeutic use , Urinary Tract Infections/drug therapy , Acetylcysteine/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Antifungal Agents/chemistry , Antifungal Agents/therapeutic use , Arbutin/chemistry , Biofilms/drug effects , Biofilms/growth & development , Biological Products/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/therapeutic use , Candida/drug effects , Candida/growth & development , Candida/pathogenicity , Drug Combinations , Female , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Gram-Negative Bacteria/pathogenicity , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Gram-Positive Bacteria/pathogenicity , Humans , Male , Microbial Sensitivity Tests , Umbelliferones/chemistry , Urinary Tract Infections/microbiology , Urinary Tract Infections/pathology
13.
Molecules ; 26(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34361728

ABSTRACT

Glycyrrhetinic acid (GA) is one of many interesting pentacyclic triterpenoids showing significant anticancer activity by triggering apoptosis in tumor cell lines. This study deals with the design and synthesis of new glycyrrhetinic acid (GA)-amino acid peptides and peptide ester derivatives. The structures of the new derivatives were established through various spectral and microanalytical data. The novel compounds were screened for their in vitro cytotoxic activity. The evaluation results showed that the new peptides produced promising cytotoxic activity against the human breast MCF-7 cancer cell line while comparing to doxorubicin. On the other hand, only compounds 3, 5, and 7 produced potent activity against human colon HCT-116 cancer cell line. The human liver cancer (HepG-2) cell line represented a higher sensitivity to peptide 7 (IC50; 3.30 µg/mL), while it appeared insensitive to the rest of the tested peptides. Furthermore, compounds 1, 3, and 5 exhibited a promising safety profile against human normal skin fibroblasts cell line BJ-1. In order to investigate the mode of action, compound 5 was selected as a representative example to study its in vitro effect against the apoptotic parameters and Bax/BCL-2/p53/caspase-7/caspase-3/tubulin, and DNA fragmentation to investigate beta (TUBb). Additionally, all the new analogues were subjected to antimicrobial assay against a panel of Gram-positive and Gram-negative bacteria and the yeast candida Albicans. All the tested GA analogues 1-8 exhibited more antibacterial effect against Micrococcus Luteus than gentamicin, but they exhibited moderate antimicrobial activity against the tested bacterial and yeast strains. Molecular docking studies were also simulated for compound 5 to give better rationalization and put insight to the features of its structure.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Antifungal Agents/chemical synthesis , Antineoplastic Agents/chemical synthesis , Cytotoxins/chemical synthesis , Glycyrrhetinic Acid/chemistry , Peptides/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Candida albicans/drug effects , Candida albicans/growth & development , Caspase 3/chemistry , Caspase 3/genetics , Caspase 3/metabolism , Cell Line , Cell Survival/drug effects , Cytotoxins/pharmacology , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor , Fibroblasts/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glycyrrhetinic Acid/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , HCT116 Cells , Hep G2 Cells , Humans , MCF-7 Cells , Microbial Sensitivity Tests , Peptides/pharmacology , Protein Conformation , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
14.
Molecules ; 26(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34361735

ABSTRACT

Biofilms, the predominant growth mode of microorganisms, pose a significant risk to human health. The protective biofilm matrix, typically composed of exopolysaccharides, proteins, nucleic acids, and lipids, combined with biofilm-grown bacteria's heterogenous physiology, leads to enhanced fitness and tolerance to traditional methods for treatment. There is a need to identify biofilm inhibitors using diverse approaches and targeting different stages of biofilm formation. This review discusses discovery strategies that successfully identified a wide range of inhibitors and the processes used to characterize their inhibition mechanism and further improvement. Additionally, we examine the structure-activity relationship (SAR) for some of these inhibitors to optimize inhibitor activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Extracellular Polymeric Substance Matrix/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Small Molecule Libraries/pharmacology , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/isolation & purification , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biofilms/growth & development , Cyclic GMP/antagonists & inhibitors , Cyclic GMP/chemistry , Cyclic GMP/metabolism , Drug Design , Drug Discovery , Drug Resistance, Bacterial/drug effects , Extracellular Polymeric Substance Matrix/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Gram-Negative Bacteria/growth & development , Gram-Negative Bacteria/pathogenicity , Gram-Positive Bacteria/growth & development , Gram-Positive Bacteria/pathogenicity , Lipids/antagonists & inhibitors , Lipids/chemistry , Microbial Sensitivity Tests , Nucleic Acids/antagonists & inhibitors , Nucleic Acids/chemistry , Nucleic Acids/metabolism , Polysaccharides, Bacterial/antagonists & inhibitors , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/isolation & purification , Structure-Activity Relationship
15.
Molecules ; 26(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34361742

ABSTRACT

The biological activities of propolis samples are the result of many bioactive compounds present in the propolis. The aim of the present study was to determine the various chemical compounds of some selected propolis samples collected from Palestine and Morocco by the High-Performance Liquid Chromatography-Photodiode Array Detection (HPLC-PDA) method, as well as the antioxidant and antibacterial activities of this bee product. The chemical analysis of propolis samples by HPLC-PDA shows the cinnamic acid content in the Palestinian sample is higher compared to that in Moroccan propolis. The results of antioxidant activity demonstrated an important free radical scavenging activity (2,2-Diphenyl-1-picrylhydrazyl (DPPH); 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and reducing power assays) with EC50 values ranging between 0.02 ± 0.001 and 0.14 ± 0.01 mg/mL. Additionally, all tested propolis samples possessed a moderate antibacterial activity against bacterial strains. Notably, Minimum Inhibitory Concentrations (MICs) values ranged from 0.31 to 2.50 mg/mL for Gram-negative bacterial strains and from 0.09 to 0.125 mg/mL for Gram-positive bacterial strains. The S2 sample from Morocco and the S4 sample from Palestine had the highest content of polyphenol level. Thus, the strong antioxidant and antibacterial properties were apparently due to the high total phenolic and flavone/flavonol contents in the samples. As a conclusion, the activities of propolis samples collected from both countries are similar, while the cinnamic acid in the Palestinian samples was more than that of the Moroccan samples.


Subject(s)
Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Cinnamates/chemistry , Phenols/chemistry , Propolis/chemistry , Animals , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antioxidants/isolation & purification , Antioxidants/pharmacology , Bees/physiology , Benzothiazoles/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Cinnamates/isolation & purification , Cinnamates/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Microbial Sensitivity Tests , Middle East , Morocco , Phenols/isolation & purification , Phenols/pharmacology , Picrates/antagonists & inhibitors , Polyphenols , Principal Component Analysis , Propolis/isolation & purification , Sulfonic Acids/antagonists & inhibitors
16.
Molecules ; 26(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34361759

ABSTRACT

Croton ferrugineus Kunth is an endemic species of Ecuador used in traditional medicine both for wound healing and as an antiseptic. In this study, fresh Croton ferrugineus leaves were collected and subjected to hydrodistillation for extraction of the essential oil. The chemical composition of the essential oil was determined by gas chromatography equipped with a flame ionization detector and gas chromatography coupled to a mass spectrometer using a non-polar and a polar chromatographic column. The antibacterial activity was assayed against three Gram-positive bacteria, one Gram-negative bacterium and one dermatophyte fungus. The radical scavenging properties of the essential oil was evaluated by means of DPPH and ABTS assays. The chemical analysis allowed us to identify thirty-five compounds representing more than 99.95% of the total composition. Aliphatic sesquiterpene hydrocarbon trans-caryophyllene was the main constituent with 20.47 ± 1.25%. Other main compounds were myrcene (11.47 ± 1.56%), ß-phellandrene (10.55 ± 0.02%), germacrene D (7.60 ± 0.60%), and α-humulene (5.49 ± 0.38%). The essential oil from Croton ferrugineus presented moderate activity against Candida albicans (ATCC 10231) with an MIC of 1000 µg/mL, a scavenging capacity SC50 of 901 ± 20 µg/mL with the ABTS method, and very strong antiglucosidase activity with an IC50 of 146 ± 20 µg/mL.


Subject(s)
Anti-Infective Agents/chemistry , Antioxidants/chemistry , Croton/chemistry , Enzyme Inhibitors/chemistry , Oils, Volatile/chemistry , Plant Leaves/chemistry , Acyclic Monoterpenes/chemistry , Acyclic Monoterpenes/isolation & purification , Alkenes/chemistry , Alkenes/isolation & purification , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Antioxidants/isolation & purification , Antioxidants/pharmacology , Benzothiazoles/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Candida albicans/drug effects , Candida albicans/growth & development , Cyclohexane Monoterpenes/chemistry , Cyclohexane Monoterpenes/isolation & purification , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Escherichia coli/drug effects , Escherichia coli/growth & development , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Microbial Sensitivity Tests , Monocyclic Sesquiterpenes/chemistry , Monocyclic Sesquiterpenes/isolation & purification , Picrates/antagonists & inhibitors , Polycyclic Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/isolation & purification , Sesquiterpenes, Germacrane/chemistry , Sesquiterpenes, Germacrane/isolation & purification , Sulfonic Acids/antagonists & inhibitors , alpha-Glucosidases/chemistry
17.
Molecules ; 26(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34361766

ABSTRACT

Hedyosmum racemosum (Ruiz & Pav.) G. is a native species of Ecuador used in traditional medicine for treatment of rheumatism, bronchitis, cold, cough, asthma, bone pain, and stomach pain. In this study, fresh H. racemosum leaves of male and female specimens were collected and subjected to hydrodistillation for the extraction of the essential oil. The chemical composition of male and female essential oil was determined by gas chromatography-gas chromatography equipped with a flame ionization detector and coupled to a mass spectrometer using a non-polar and a polar chromatographic column. The antibacterial activity was assayed against five Gram-positive and two Gram-negative bacteria, and two dermatophytes fungi. The scavenging radical properties of the essential oil were evaluated by DPPH and ABTS assays. The chemical analysis allowed us to identify forty-three compounds that represent more than 98% of the total composition. In the non-polar and polar column, α-phellandrene was the principal constituent in male (28.24 and 25.90%) and female (26.47 and 23.90%) essential oil. Other main compounds were methyl chavicol, germacrene D, methyl eugenol, and α-pinene. Female essential oil presented a strong activity against Klebsiella pneumoniae (ATCC 9997) with an minimum inhibitory concentration (MIC) of 500 µg/mL and a scavenging capacity SC50 of 800 µg/mL.


Subject(s)
Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Cyclohexane Monoterpenes/chemistry , Magnoliopsida/chemistry , Oils, Volatile/chemistry , Allylbenzene Derivatives/chemistry , Allylbenzene Derivatives/isolation & purification , Anisoles/chemistry , Anisoles/isolation & purification , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antioxidants/isolation & purification , Antioxidants/pharmacology , Arthrodermataceae/drug effects , Arthrodermataceae/growth & development , Benzothiazoles/antagonists & inhibitors , Bicyclic Monoterpenes/chemistry , Bicyclic Monoterpenes/isolation & purification , Biphenyl Compounds/antagonists & inhibitors , Cyclohexane Monoterpenes/isolation & purification , Ecuador , Eugenol/analogs & derivatives , Eugenol/chemistry , Eugenol/isolation & purification , Female , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Humans , Magnoliopsida/metabolism , Male , Microbial Sensitivity Tests , Picrates/antagonists & inhibitors , Plant Leaves/chemistry , Plants, Medicinal , Sesquiterpenes, Germacrane/chemistry , Sesquiterpenes, Germacrane/isolation & purification , Sex Factors , Sulfonic Acids/antagonists & inhibitors
18.
Molecules ; 26(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209863

ABSTRACT

The fungal strain was isolated from a soil sample collected in Giza province, Egypt, and was identified as Aspergillus ochraceopetaliformis based on phenotypic and genotypic data. The ethyl acetate extract of the fungal strain exhibited promising activity levels against several pathogenic test organisms and through a series of 1H NMR guided chromatographic separations, a new α-pyrone-C-lyxofuranoside (1) along with four known compounds (2-5) were isolated. The planar structure of the new metabolite was elucidated by detailed analysis of its 1D/2D NMR and HRMS/IR/UV spectroscopic data, while the relative configuration of the sugar moiety was determined by a combined study of NOESY and coupling constants data, with the aid of theoretical calculations. The structures of the known compounds-isolated for the first time from A. ochraceopetaliformis-were established by comparison of their spectroscopic data with those in the literature. All isolated fungal metabolites were evaluated for their antibacterial and antifungal activities against six Gram-positive and Gram-negative bacteria as well as against three human pathogenic fungi.


Subject(s)
Anti-Bacterial Agents , Aspergillus/metabolism , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/growth & development , Soil Microbiology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Aspergillus/isolation & purification
19.
Molecules ; 26(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209107

ABSTRACT

Bee products have been known for centuries for their versatile healing properties. In recent decades they have become the subject of documented scientific research. This review aims to present and compare the impact of bee products and their components as antimicrobial agents. Honey, propolis, royal jelly and bee venom are bee products that have antibacterial properties. Sensitivity of bacteria to these products varies considerably between products and varieties of the same product depending on their origin. According to the type of bee product, different degrees of activity were observed against Gram-positive and Gram-negative bacteria, yeasts, molds and dermatophytes, as well as biofilm-forming microorganisms. Pseudomonas aeruginosa turned out to be the most resistant to bee products. An analysis of average minimum inhibitory concentration values for bee products showed that bee venom has the strongest bacterial effectiveness, while royal jelly showed the weakest antibacterial activity. The most challenging problems associated with using bee products for medical purposes are dosage and safety. The complexity and variability in composition of these products raise the need for their standardization before safe and predictable clinical uses can be achieved.


Subject(s)
Anti-Bacterial Agents , Bee Venoms , Bees/chemistry , Fatty Acids , Honey , Propolis , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Bee Venoms/chemistry , Bee Venoms/therapeutic use , Fatty Acids/chemistry , Fatty Acids/therapeutic use , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/growth & development , Propolis/chemistry , Propolis/therapeutic use
20.
Int J Mol Sci ; 22(11)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073167

ABSTRACT

Discovery of novel antibacterial agents with new structures, which combat pathogens is an urgent task. In this study, a new library of (+)-neoisopulegol-based O-benzyl derivatives of aminodiols and aminotriols was designed and synthesized, and their antimicrobial activity against different bacterial and fungal strains were evaluated. The results showed that this new series of synthetic O-benzyl compounds exhibit potent antimicrobial activity. Di-O-benzyl derivatives showed high activity against Gram-positive bacteria and fungi, but moderate activity against Gram-negative bacteria. Therefore, these compounds may serve a good basis for antibacterial and antifungal drug discovery. Structure-activity relationships were also studied from the aspects of stereochemistry of the O-benzyl group on cyclohexane ring and the substituent effects on the ring system.


Subject(s)
Anti-Infective Agents , Benzyl Compounds , Fungi/growth & development , Gram-Positive Bacteria/growth & development , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Benzyl Compounds/chemical synthesis , Benzyl Compounds/chemistry , Benzyl Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...